D. E.
Fitzpatrick
and
S. V.
Ley
*
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. E-mail: svl1000@cam.ac.uk
First published on 30th September 2016
Synthesis chemistry need not be limited to either only batch or only flow; rather, in the future we expect that it will consist of an amalgamation of the best and most appropriate methods. We have therefore devised a single reactor platform to conduct both batch and flow reactions, either singly or in concert, using open source technologies to automate, control and monitor individual processes. We illustrate this concept with the multistep synthesis of 5-methyl-4-propylthiophene-2-carboxylic acid to showcase the utility of this approach in a telescoped manner. Automated downstream processing techniques, consisting of continuous extraction and solvent switching steps, were also included, further freeing the chemist from routine laboratory tasks.
Therefore, rather than making an arbitrary choice between either batch or flow methods, a more holistic approach makes sense whereby all molecular assembly and experiments can be performed on a single, modular reactor system. Such an approach would undoubtedly facilitate smoother transition from small to larger scale and even onto full scale production. In so doing, it would help to break down some of the notions and prejudices that currently inhibit continuity across the synthesis spectrum.
This idea has been partially explored by some,7–10 however in the vast majority of reported cases there has not been a true and free integration between the two schools of thought. Although operating a flow process which culminates in dropwise addition of the product stream into a stirred round bottom flask can be useful, it does not constitute full amalgamation.
Rather, we must refine our reaction design and problem solving strategies to follow a modular approach where one set of reaction conditions (e.g. batch) can be swapped for another (e.g. flow) without requiring significant changes to either upstream or downstream processes (Fig. 1). It is crucial, therefore, that this process be made as simple as possible to enhance its utility and aid with its adoption by chemists.
As with any union of conceptual ideas, the distinct line that once separated batch and flow becomes blurred. Historically, batch processes were distinctly step-wise operations that required significant manual input from chemists during reaction procedures. Some semi-automated batch platforms, such as the Mettler-Toledo EasyMax system11 and Syrris Atlas HD,12 both sold commercially, were designed to help reduce the labour-consuming manner of batch procedures, yet the overall nature of this synthetic approach has not changed significantly. Conversely, flow procedures were focussed on setting up a reaction sequence, then allowing it to run for extended periods of time in a continuous fashion under steady-state conditions.
The single platform approach therefore enables the modularity of flow processes to be combined with the simplicity of batch, leading to a practical approach to synthesis. Full reaction procedures and associated downstream processes, such as extractions or solvent switching, can be automated, and data from all aspects of an experiment can be collected, displayed, recorded and analysed in real-time.
We believe that we have made a start to overcoming hurdles of batch and flow integration, described below. The approach we have adopted facilitates high temperature, low temperature and high pressure chemistries, control, monitoring, automation and downstream processing – all on a single, unified platform.
Fig. 2 The current synthesis route to 5-methyl-4-propylthiophene-2-carboxylic acid, a precursor to the drug candidate AZ82. |
We divided the work into three constituent phases to separate key steps from the others, providing a modular approach to the problems likely to be encountered. Each of these phases was designed to be executed independently of the others, providing freedom in terms of inter-step material transportation and giving flexibility and different opportunities for reactor reconfiguration.
The final experimental schematic, in which the three phases are telescoped together, is shown in Fig. 3. These phases consist of multiple chemical reaction steps (in Phases 1 and 3) and two downstream-processing steps (Phase 2). All equipment was connected to our laboratory network to facilitate automated control and remote monitoring (a more detailed description of this system is given below). This schematic is the result of a number of revisions, typical of any synthesis programme, with changes largely arising from observations during initial experimentation such as unexpected solid formation during Phase 3, differences in solvent boiling points, etc. More information relating to the various revisions and an in-depth description of each phase is provided in the ESI† document.
For this project however we required new glassware to be developed to support batch reactions. Accordingly, we designed new batch vessels that were compatible with our existing flow equipment (Fig. 4), unlocking a number of advantages that are not possible in standard inexpensive round-bottom flasks (RBF).
Fig. 4 Schematic for the new glassware that was designed to support batch reactions on the R4+ reactor unit. This study uses two flask sizes: 50 mL and 100 mL. |
The glassware we developed incorporated a three-layered jacket, with a vacuum between the outer two glass layers. This design greatly enhanced heat transfer from the heating medium (in this case moving gas) to the reaction mixture as the entire inner surface of the flask was maintained at the target temperature, as opposed to just the lower half only, as is typical in RBF reactions. Accordingly we were able to fill the flask to almost its entire volume with reaction liquid. Compared with standard batch procedures there was also enhanced thermal control of the reaction mixture, as the temperature of the glass surface was measured directly by a thermocouple rather than the temperature of a nearby position in a heating block or sand. Furthermore, the exterior surface of the glass remained cool to touch, even if the inner surface exceeded 100 °C. Stirring was achieved through an externally mounted rotating magnetic unit.
In addition to the heated air inlet and exhaust vent, two threaded openings through the vacuum layer were included: one for a thermocouple; and the other to act as the external connector for the cooling nitrogen stream. Adopting such a design enabled the flask to operate throughout the whole R4+ operating temperature range (−70 °C to 150 °C). For this investigation, we used two flasks (50 mL and 100 mL), one of which was cooled only while the other was both heated and cooled. Different sizes and port arrangements can be readily accommodated to give full RBF flexibility. These RBFs can accommodate standard glassware adapters, enabling reflux condensers and other batch apparatus to be connected easily.
The system is cloud-based,20,21 with chemist-server and server-equipment interaction occurring via the internet. Each piece of equipment involved with the experiment is connected to an internal laboratory network and has its own unique address where the server can issue commands and receive data. Chemists access the control system through an internet browser, allowing them to monitor and control reactions in real-time from wherever they are located. The system saves all data points to a database, allowing for further analysis at a later date (Fig. 5).
Automation of equipment is achieved through simple scripts defining the logic structures with which the system should base its control strategy. The scripts used for Phases 1, 2 and 3 are included in the ESI.† Using an automated computer-based system made it possible for one researcher to carry out this investigation, greatly simplifying the demand on their time for routine tasks such as extraction and removing the need to manually control the experiment's eight HPLC pumps, two syringe pumps, two peristaltic pumps, four valves and four reactor slots individually.
The use of an automated system also improves reproducibility and robustness, especially in terms of rate of addition into batch vessels. Using a precisely controlled syringe pump to add reagents dropwise into a flask removes the variability that can arise from manual actions.
The control scripts for this process, housed on a low-cost Raspberry Pi computer,26 monitored the position of a small coloured float that marked the interface between the aqueous and organic phases (Fig. 6). If the float rose too high as the heavier dichloromethane (DCM) layer increased in volume, a small peristaltic pump was turned on. When the float then fell below a defined lower point, the pump was turned off. This process prevented the under- or over-flow of one phase into the outlet of the other.
Fig. 6 An open-source machine vision system22–25 was used to control the continuous extraction in Phase 2. The low-cost consumer web-camera detected the position of the green coloured float, sending information to a Raspberry Pi device which in turn sent commands to an Arduino board connected to a small peristaltic pump. |
The alternative batch process using classical separation funnels are time and labour intensive and do not deliver on scale. They are also subject to the inaccuracies of vision of the experimentalist.
One of the more difficult downstream processing challenges encountered was related to the solvent incompatibility between Phases 1 and 3. Indeed, the main purpose of Phase 2 was to replace the DCM used in Phase 1 with ethanol. While our group has previously reported a spray-drying system27 that can be used to exchange solvents in a wide variety of mixtures, for this project we decided to opt instead for an uncomplicated system that takes advantage of the large difference in boiling points between DCM and ethanol.
Our simple, single stage distillation unit, shown in Fig. 7, takes as its inlet a solution of reaction mixture in DCM and ethanol. This fluid stream is pumped through PTFE tubing wrapped around a central glass column which is itself placed into a heated jacket slotted into the R4+ unit. The temperature of this jacket is set at 90 °C, significantly above the boiling point of DCM (39.6 °C) and a little above that of ethanol (78.4 °C). As the DCM component of the inlet stream boils, liquid is ejected from the end of the tube into the centre of the column where any remaining DCM boils and is removed by a small nitrogen feed. Owing to the elevated temperature ethanol loss is also experienced, however this did not overly concern us as the solvent is inexpensive and readily available. It is also worth noting that the exiting solvent can be captured and recycled. Periodically a peristaltic pump at the bottom of the column was turned on to reduce the build-up of the product solution (now in ethanol) in the column.
Owing to the instability of intermediate A on silica, it was not possible to obtain easily an isolated yield with which to determine performance of the process we adopted. However, we were able to obtain a crude NMR yield of approximately 80%, a figure we were satisfied with moving forward into the next phase.
Fig. 9 Process schematic for Phase 2. This phase consisted of an automated, continuous liquid–liquid extraction followed by a solvent switch. |
Prior to using the distillation column to switch the solvent of the product-containing mixture from DCM to ethanol, we first conducted trials varying fluid flow rates and temperatures with an inlet mixture containing just DCM and ethanol. A table of results from this process is included in the ESI.† The best results were obtained when using a 1:1 volumetric ratio of DCM to ethanol and a column temperature of 90 °C, with around 95% removal of DCM (molar basis, the molar fraction of DCM in the exit stream was 2.6%). This corresponds to the azeotrope for the binary ethanol–DCM system.
Having identified operating conditions for our distillation process, we used it successfully to exchange the solvent of the organic layer collected from the extraction column. The resulting ethanol-enriched stream was pumped through a small plug of anhydrous magnesium sulfate to remove any water contained with the stream.
Initially we added sodium to a room temperature solution of ethanol in the flask to generate the corresponding ethoxide. This first step was carried out manually, while the remaining three steps were automated using our control system. The second step involved adding ethyl 2-mercaptoacetate dropwise by a syringe pump to the sodium ethoxide solution at 0 °C, then allowing the mixture to warm to room temperature. Subsequently the product mixture from Phase 2 was added dropwise and stirred at reflux, before an aqueous solution of potassium hydroxide was added dropwise.
Following a manual workup procedure involving ethanol removal and acidification with HCl, 5-methyl-4-propylthiophene-2-carboxylic acid was isolated using flash chromatography.
Having set up our equipment to handle telescoping of the three phases, we carried out the experiment successfully. One researcher was sufficient to manage the entire process, and it was possible to obtain our desired carboxylic acid product with an overall yield of 30%, slightly above the 27% overall yield obtained when the reactions are carried out manually in typical batch mode using standard procedures.
Much of the experimental detail typically reported above is often relegated to ESI† or worse assumed to be common knowledge by those skilled in the art of synthesis. In fact, this is just the area where lack of robustness or imprecise reporting of details leads to scale-up errors and lack of reproducibility.
We believe the integration of this kind represents the beginnings of a general shift in synthetic techniques, whereby any element of batch and flow can be conducted on the same working reactor platform thus creating a new environment for synthesis. The general concepts demonstrated are adaptable to any chemistry environment without the need for any special or expensive equipment.
What has been presented represents some opportunities for a co-ordinated system illustrated by a single example which incorporated a number of synthesis protocols. In reality, any one operation could have been conducted in isolation on this universal modular reactor platform.
Footnote |
† Electronic supplementary information (ESI) available. See DOI: 10.1039/c6re00160b |
This journal is © The Royal Society of Chemistry 2016 |