Masoud Karimia,
Ali Ramazani*ab,
Sami Sajjadifar
c and
Sobhan Rezayati
a
aDepartment of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran. E-mail: aliramazani@znu.ac.ir; aliramazani@gmail.com; sobhan.rezayati@yahoo.com; sobhan.rezayati@znu.ac.ir; masoudkarimi67@gmail.com
bDepartment of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan 45371-38791, Iran
cDepartment of Chemistry, Payame Noor University, PO BOX 19395-4697, Tehran, Iran. E-mail: ss.sajjadifar@gmail.com
First published on 4th October 2023
In the present study, a copper(II) complex containing a pyridine-2-carbaldehyde ligand and its direct binding onto ethylenediamine functionalized with Fe3O4@SiO2 nanoparticles [Cu(II)-Schiff base-(CH2)3-SiO2@Fe3O4] as a heterogeneous magnetic nanocatalyst can be easily prepared using a multi-step method. Next, the structural and magnetic properties of the synthesized nanoparticles were identified using Fourier-transform infrared spectroscopy (FT-IR), inductively coupled plasma (ICP), vibrating-sample magnetometry (VSM), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TGA), PXRD (Powder X-ray diffraction), Brunauer–Emmett–Teller (BET), and energy-dispersive X-ray spectrometry (EDX) techniques. TEM images reveal that the average particle size distribution was found to be in the range of 45–55 nm with spherical shape. The PXRD analysis indicated that the crystallite size was found to be 35.2 nm. The synthesized nanocatalyst exhibited a very good catalytic ability in the synthesis reaction of pyran derivatives and 2-benzylidenemalononitrile derivatives. Product 2-amino-7,7-dimethyl-4-(4-nitrophenyl)-5-oxo-5,6,7,8-tetrahydrobenzo[b]pyran 4e was achieved in 97% yield with a TON of 129.3 and a TOF of 646.6 h−1 and product 2-(4-cyanobenzylidene)malononitrile 3j was achieved in 96% yield with a TON of 128 and a TOF of 984.6 h−1. In addition, the synthesized nanocatalyst was easily separated from the reaction mixture by a magnet and used 7 consecutive times without significant loss of catalytic activity. Also, leaching of copper metal from the synthesized nanocatalyst was very insignificant for this reaction.
Fe3O4 nanoparticles have been extensively employed in the fields of catalysis.4,5 Recently, there has been a surge in interest in utilizing magnetically responsive materials, specifically Fe3O4 MNPs, which are combined with nano-structured transition metal heterogeneous catalysts.6 This approach has gained attention due to its environmental friendliness and the convenience it offers in terms of catalyst recyclability.7 These systems offer enhanced flexibility, allowing for improved contact between the catalyst and reactants. Consequently, the catalyst's activity is greatly increased. Fe3O4 magnetic nanoparticles (MNPs) possess a cubic inverse spinel configuration, wherein the Fe element exists in both the Fe2+ and Fe3+ cationic. Nonetheless, Fe3O4 MNPs, when synthesized, exhibit instability owing to their elevated surface energy, which tends to promote oxidation, decomposition and aggregation. To prevent these issues, a potential solution is to encase Fe3O4 NPs within a shell made of a different material. Silica functionalized magnetic nanoparticles have gained significant attention due to their numerous advantageous features, including ease of functionalization, lack of toxicity, straightforward synthesis, convenient separation from the reaction medium facilitated by an external magnet, and straightforward synthesis. Silica has become increasingly popular due to its attractive potential, making it one of the most durable and versatile surfaces. It offers numerous advantages including chemical inertness and biocompatibility, improved mechanical stability, thermal stability, optical transparency, and the ability to control chemical reactions spectroscopically.8 We were motivated to develop green and sustainable Fe3O4-based heterogeneous catalysts due to the intriguing characteristics of these special. Scientists can design highly active, selective and flexible nanocatalysts. All these benefits make industrial chemical reactions more resource efficient, enabling energy use and waste reduction, helping to offset the environmental impact of reliance on chemical processes.9,10
From the point of view of green chemistry, it is very important to design and economic chemical processes using heterogeneous catalysts for the preparation of chemical and pharmaceutical products through multicomponent reactions (MCRs).11–13 Multi-component reactions have significant advantages, such as high atom economy and bond formation efficiency, avoiding by-products, fast and simple execution, saving time and energy, and avoiding complex purification methods.14
Knoevenagel condensation is a nucleophilic addition reaction, in which a compound containing active hydrogen, such as malonates, which attacks a carbonyl group (aldehyde or ketone) and loses a water molecule to form the final product. Knoevenagel condensation is one of the most common methods used in organic chemistry for electron-less synthetic olefins, which occurs as a result of the reaction between active methylenes and carbonyl compounds.15 The α,β-unsaturated compounds which formed by Knoevenagel condensation, are one of the essential intermediates in producing chemicals, herbicides, carbohydrates, pharmaceuticals, and pesticides, dyes.16–19 Benzylidene malononitriles are regularly utilized as an intermediate molecule and a target molecule in organic synthesis. They have fascinated consideration due to special properties such as anti-fungal, anti-cancer, anti-bacterial, and anti-corrosive20–23 and used to probes of solvent friction.24
Substituted 2-amino-4H-pyran derivatives in which the Knoevenagel condensation are prepared through a three-component one-pot reaction including malononitrile, aldehyde and enolizable acids (such as dimedone, barbituric acid, α,β-naphthols, 2-hydroxy-1,4-naphthoquinone-4-hydroxycoumarin).25–27 Recently, the synthesis of this group of compounds has been revised due to the increase in their use in the field of medicinal chemistry and materials science.28 In the past, various synthetic methods for making this class of compounds, including conventional thermal reactions,29 microwave-radiation reactions30 in the presence of organic solvents and various catalysts and such reactions have been widely expanded. Substituted 2-amino-4H-pyran derivatives are synthesized in the presence of various catalysts including theophylline,31 uric acid,32 TiCl4,33 Fe3O4@SiO2@NH2,34 Fe3O4/HNTs,35 Fe3O4@SiO2-imine/phenoxy-Cu(II) core–shell MNPs,36 lipase,37 CuFe2O4@starch,38 ZnO,39 nano CeO2,40 Fe3O4@SiO2@(CH2)3-Urea,41 Fe3O4@SiO2@GPTMS@guanidine,42 Fe3O4@SiO2@(CH2)3/EDA,43 NH2@SiO2@Fe3O4,44 Au/NiAlTi LDH,45 core/shell Fe3O4@GA@isinglass.46 However, the many disadvantages of using these catalysts, such as low efficiency, long reaction time, corrosiveness, environmental pollution, etc., made chemists think of using novel catalysts to perform this reaction.
Considering the importance and benefits of MCRs with catalysts for the synthesis of heterocyclic compounds,47 in this study, we synthesized for the first time the copper(II) complex containing pyridine-2-carbaldehyde ligand and its direct binding onto ethylenediamine functionalized with Fe3O4@SiO2 nanoparticles [Cu(II)-Schiff base-(CH2)3-SiO2@Fe3O4] as a recyclable catalysts by a facile and multi-step method. Then, the catalytic activity of this nanocatalyst has been investigated for the synthesis of 2-amino-4H-pyrans and 2-benzylidenemalononitriles (Scheme 1).
![]() | ||
Scheme 1 Schematic representation of the 2-amino-4H-pyrans and 2-benzylidenemalononitrile derivatives catalyzed by Cu(II)-Schiff-base-(CH2)3@SiO2@Fe3O4 |
The structure and the functional groups of (a) Fe3O4, (b) SiO2@Fe3O4, (c) Cl(CH2)3@SiO2@Fe3O4, (d) NH2(CH2)2NH-(CH2)3@SiO2@Fe3O4, (e) Schiff-base-(CH2)3@SiO2@Fe3O4, and (f) Cu(II)-Schiff-base-(CH2)3@SiO2@Fe3O4 were approved by the FT-IR spectrum (Fig. 1). By examining layer by layer and comparing with the new layer, we can prove the synthesis of the catalyst. Fe3O4 NPs is confirmed via Fe–O bond apparition around 615 cm−1 (Fig. 1a).48 In the next step, by coating SiO2 two broad bands related to the hydroxyl groups and Si–O–Si appeared (Fig. 1b). Symmetric and antisymmetric stretching vibrations of Si–O–Si appeared about 795 and 1084 cm−1, respectively.48 Absorptions peaks of C–H group of Cl(CH2)3@SiO2@Fe3O4 appeared about 2913 cm−1 (Fig. 1c). The absorptions peaks about 1619 and 3406 cm−1 that are belong to the bending vibration of N–H and stretching frequency of N–H, respectively1 (Fig. 1d).48 After adding pyridine-2-carbaldehyde absorptions peaks CC belong to aromatic ring appear about in 1617 cm−1 and 1623 cm−1 (Fig. 1e). In Cu(II)-Schiff-base-(CH2)3@SiO2@Fe3O4, the carbonyl peak shifts from 1636 cm−1 which indicates the complexation of Cu has occurred (Fig. 1f). The absorption peaks at about 1384 cm−1 belong to the bending vibration of NO2.
![]() | ||
Fig. 1 FT-IR spectra of (a) Fe3O4, (b) SiO2@Fe3O4, (c) Cl(CH2)3@SiO2@Fe3O4, (d) NH2(CH2)2NH-(CH2)3@SiO2@Fe3O4, (e) Schiff-base-(CH2)3@SiO2@Fe3O4, and (f) Cu(II)-Schiff-base-(CH2)3@SiO2@Fe3O4 |
PXRD analysis was used to identify the crystallite size, inter-planer distance and Miller indices of the nanocatalyst. Fig. 2 indicated the PXRD pattern of the Fe3O4 and Cu(II)-Schiff-base-(CH2)3@SiO2@Fe3O4 were demonstrated in the 2θ at room temperature (range of 10–80°). Examining the X-ray diffraction pattern in the Fe3O4 shows seven index peaks at 2θ = 19.9, 32.4, 37.7, 44.9, 55.7, 59.7 and 65.1, which are respectively related to pages (1 1 1), (2 2 0), (3 1 1), (4 0 0), (4 2 2), (5 1 1) and (4 4 0), which agrees with the spectrum of Fe3O4 (JCPDS 88-0866) and confirms its cubic structure.49 Moreover, examining the X-ray diffraction pattern in the Cu(II)-Schiff-base-(CH2)3@SiO2@Fe3O4 shows new two peaks at 2θ = 43.2 (2 0 0) and 74.2 (2 2 0) that agrees with the spectrum of copper (JCPDS, copper file no. 04-0836). Two new peaks confirmed that the nanoparticles successful synthesized. Additionally, we evaluated the crystallite size and inter-planer distance of the catalyst for per peak of intensity by applying the Scherrer equation [D = Kλ/(βcos
θ)] and Bragg formula [dhkl = k/(2
sin
θ)], respectively (Table 1). The Table 1 shows that the average crystallite size was 35.2 nm and average inter-planer distance was 0.2097 nm.
Entry | 2θ | Peak width (FWHM) | Miller indices | Particle size (nm) | Inter-planer distance (nm) | ||
---|---|---|---|---|---|---|---|
h | k | l | |||||
1 | 18.42 | 0.3444 | 0 | 1 | 2 | 23.4 | 0.3686 |
2 | 30.16 | 0.2952 | 1 | 0 | 4 | 27.9 | 0.2703 |
3 | 35.51 | 0.3444 | 1 | 1 | 0 | 24.2 | 0.2519 |
4 | 43.25 | 0.2952 | 2 | 0 | 2 | 29.0 | 0.2080 |
5 | 46.65 | 0.1476 | 0 | 2 | 4 | 58.5 | 0.1842 |
6 | 53.59 | 0.1968 | 1 | 1 | 6 | 45.2 | 0.1696 |
7 | 57.17 | 0.3444 | 1 | 2 | 2 | 26.3 | 0.1601 |
8 | 62.75 | 0.2400 | 2 | 1 | 4 | 38.8 | 0.1487 |
9 | 74.23 | 0.2460 | 2 | 2 | 0 | 40.5 | 0.1259 |
The major physical features and surface morphology of the Fe3O4 and as-prepared nanocatalyst were considered by FE-SEM images in various magnifications (Fig. 3A and B). The SEM images display that the Fe3O4 and as-prepared nanocatalyst have a spherical shape with nanoscale dimensions. After coating Fe3O4 with silica and various organic compounds, the spherical morphology of as-prepared nanocatalyst was intact. In another study, TEM images for Fe3O4 and as-prepared nanocatalyst were studied (Fig. 3C and D). The TEM analysis images confirm well and show the core–shell structure. TEM enlarged form clearly shows that silica has been successfully fixed (bright layer) on Fe3O4 magnetic nanoparticles (dark area). Moreover, the particle size distribution diagram for as-prepared nanocatalyst are almost 45–55 nm (Fig. 3E).
The elemental composition related to as-prepared nanocatalyst was examined by EDX analysis (Fig. 4). Hence, the presence of nanocatalyst components elements, including Fe, Cu, Si, O, C, and N and the mass percentages 14.04, 1.62, 15.40, 37.46, 29.40, and 2.08, respectively was proved as expected. This analysis show that the copper metal coated well on the surface. The results obtained from the ICP analysis show that the exact amount of copper in the structure is 1.92 w%.
In the following, elemental mapping analysis was used for determine the elemental content of the surface of catalyst. The distribution of atoms (Fe, Cu, Si, O, C, and N elements) indicates the position of the components associated with them and, distribution of components in catalyst (Fig. 5). The mapping images obtained demonstrate the presence of a significant concentration of C, O, and Fe elements originating from the catalyst support. According to this analysis, these elements make up over 80.9% of the sample. Furthermore, the mapping images clearly demonstrate a remarkable distribution of C, Si, N, and Cu moieties across the Fe3O4 support. These photograms clearly show that the distribution patterns of these elements agree well. This indicates that the imine groups of the as-prepared nanocatalyst serve as donor nitrogen atoms to coordinate with Cu(II) ions.
The thermal stability of as-prepared nanocatalyst was investigated by TGA-DTS curves by illustrate the nanocatalyst's weight loss and decomposition temperature (Fig. 6). As can be seen, three mass losses were confirmed for the nanocatalyst. The primary step is related to as mass-loss (1.8%) due to organic solvents or moisture at temperatures below 256 °C. The second mass-loss stage is occurred at temperatures below 500 °C due to the decomposition of organic compounds that coated on the surface. The third mass reduction occurred between 499–674 °C temperature. This decrease is because of the decomposition of silanol groups in as-prepared nanocatalyst. According to these results, the good thermal stability for the nanocatalyst was observed.
For appraise the textural properties and porosity of the Cu(II)-Schiff-base-(CH2)3@SiO2@Fe3O4 the BET analysis was perform at 77 K by nitrogen adsorption–desorption (Fig. 7). The BET results from the adsorption–desorption isotherm and BJH curve are listed in Table 2. The mesoporous nanocatalyst display a type IV isotherm. The mean pore diameter of as-synthesized nanocatalyst was 41.31 nm. The surface area is 41.40 m2 g−1, and the total pore volume is 0.066 cm3 g−1.
![]() | ||
Fig. 7 The (a) BET plot of the nitrogen adsorption–desorption and (b) pore size distribution curve of the as-prepared nanocatalyst. |
Entry | Parameter | Amount |
---|---|---|
1 | Pore volume | 1.4717 [cm3(STP) g−1] |
2 | BET surface area (as,BET) | 41.4054 [m2 g−1] |
3 | Total pore volume(p/p0 = 0.990) | 0.066146 [cm3 g−1] |
4 | Mean pore diameter | 41.306 [nm] |
The magnetic properties of Fe3O4 and Cu(II)-Schiff-base-(CH2)3@SiO2@Fe3O4 nanoparticles were investigated by vibrating sample magnetometer (VSM) and are shown in Fig. 8. This analysis shows the magnetization curve of the samples at room temperature and in the fields of −10000 to 10
000 Oe. The saturation magnetization (Ms) value of Fe3O4 and Cu(II)-Schiff-base-(CH2)3@SiO2@Fe3O4 complex was 58.5 and 37 emu g−1, respectively (Fig. 8a). This decrease in the saturation magnetization value is because of adding silica and other organic compounds on the surface of Fe3O4. The presence of a magnetic field shows that we have a clear decrease in the saturation magnetization of nanoparticles (Fig. 8b). This result is due to the effect of the magnetic field on the orientation of the magnetic dipoles. During the formation of magnetic nanoparticles, part of the nanoparticles aligns with the magnetic field.
Entry | Amount of catalyst (g) | Solvent (2 mL) | Time (min) | Yieldb (%) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a Reaction conditions: 4-chlorobenzaldehyde (1 mmol), dimedone (1 mmol), malononitrile (1 mmol), reflux conditions.b Isolated pure yield. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 | — | Ethanol | 5 h | Nil | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 | 0.005 | Ethanol | 60 | 55 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 | 0.01 | Ethanol | 60 | 71 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 | 0.03 | Ethanol | 45 | 82 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5 | 0.05 | Ethanol | 40 | 94 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6 | 0.07 | Ethanol | 40 | 91 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7 | 0.09 | Ethanol | 40 | 90 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8 | 0.1 | Ethanol | 45 | 88 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9 | 0.05 | CH3CN | 100 | 66 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10 | 0.05 | CHCl3 | 90 | 75 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
11 | 0.05 | CH2Cl2 | 90 | 76 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12 | 0.05 | CH3OH | 120 | 70 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13 | 0.05 | Toluene | 180 | 65 |
Most importantly, the catalytic activity was investigated with other catalysts including Schiff-base-(CH2)3@SiO2@Fe3O4, NH2(CH2)2NH-(CH2)3@SiO2@Fe3O4, Cl-(CH2)3@SiO2@Fe3O4, SiO2@Fe3O4, and Fe3O4. For this purpose, the reaction of 4-chlorobenzaldehyde (1 mmol), malonontrile (1 mmol) and dimedone (1 mmol) in the presence of 0.05 g of as-prepared nanocatalyst in ethanol under reflux conditions was investigated. The summary of the obtained results is presented in Table 4. As the table shows, Cu(II)-Schiff-base-(CH2)3@SiO2@Fe3O4 shows better results than other catalysts and the corresponding product was obtained in 94% efficiency.
Entry | Catalyst | Conditions | Yielda (%) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a Isolated pure yield. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 | Fe3O4 | Ethanol/reflux | 50 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 | SiO2@Fe3O4 | Ethanol/reflux | 40 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 | Cl-(CH2)3@SiO2@Fe3O4 | Ethanol/reflux | Trace | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 | NH2(CH2)2NH-(CH2)3@SiO2@Fe3O4 | Ethanol/reflux | 95 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5 | Schiff-base-(CH2)3@SiO2@Fe3O4 | Ethanol/reflux | 22 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6 | Cu(II)-Schiff-base-(CH2)3@SiO2@Fe3O4 | Ethanol/reflux | 94 |
The reaction of various aromatic aldehydes with malononitrile and dimedone was investigated in the presence of nanocatalyst in ethanol and under reflux conditions (Table 5). As can be seen, from the reaction between different aldehydes containing electron-donating and electron-withdrawing groups, the desired products were obtained with an excellent yield of 89–97% after 10–40 min. The presence of electron-withdrawing groups (EWG) on the aromatic ring increased the rate of reaction, whereas the electron-donating groups (EDG) decreased the rate slightly.
Entry | Product | Time (min) | Yieldb (%) | TON | TOF (h−1) | Mp (reference) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a A mixture of various aldehyde (1 mmol), dimedone (1 mmol), malononitrile (1 mmol), catalyst (0.05 g, 0.75 mol%) in ethanol (2 mL) was refluxed.b Isolated pure yield. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 | ![]() |
40 | 94 | 125.3 | 189 | 229–231 (ref. 50) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 | ![]() |
20 | 95 | 126.6 | 383 | 212–214 (ref. 50) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 | ![]() |
20 | 94 | 125.3 | 379.6 | 215–217 (ref. 50) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 | ![]() |
12 | 96 | 128 | 640 | 222–224 (ref. 50) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5 | ![]() |
12 | 97 | 129.3 | 646.6 | 178–180 (ref. 50) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6 | ![]() |
40 | 94 | 125.3 | 189.8 | 215–217 (ref. 50) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7 | ![]() |
40 | 92 | 122.6 | 185.6 | 196–198 (ref. 50) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8 | ![]() |
20 | 90 | 120 | 363.6 | 188–190 (ref. 50) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9 | ![]() |
45 | 89 | 118.6 | 158.1 | 220–222 (ref. 50) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10 | ![]() |
35 | 94 | 125.3 | 216 | 185–187 (ref. 50) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
11 | ![]() |
10 | 95 | 126.6 | 791.2 | 153–155 (ref. 50) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12 | ![]() |
25 | 93 | 124 | 302.4 | 212–214 (ref. 5) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13 | ![]() |
15 | 92 | 122.6 | 490.4 | 211–213 (ref. 50) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
14 | ![]() |
12 | 96 | 128 | 640 | 222–224 (ref. 50) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
15 | ![]() |
30 | 91 | 121.3 | 242.6 | 180–182 (ref. 50) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
16 | ![]() |
30 | 92 | 122.6 | 245.3 | 248–250 (ref. 50) |
Various mechanisms have been proposed for this reaction in recent years. Recently, due to the increase in the use of Lewis acids and positive halogen generating sources for this synthesis, more acceptable mechanisms have been proposed. Hence, a proposed and acceptable mechanism for the synthesis of pyran derivatives using a recyclable magnetic catalyst in the condition in EtOH at reflux condition is shown in Scheme 3. What is clear is that from the first stage of the reaction to the end of the reaction, the Lewis acid makes the nucleophilic groups more active and increases their electron deficiency (I), as a result, the nucleophile attacks faster and finally leads to ring closure. In the next step Michael addition of dimedone to arylidene malononitrile gives intermediate (II). Finally, isomerization gives the corresponding product (III).51
Using the good results obtained for the synthesis of 2-amino-4H-pyrans derivatives, we decided to investigate the activity of the synthesized catalyst for the synthesis of 2-benzylidenemalononitrile derivatives through the one-pot reaction of aromatic aldehydes and malonontrile. In order to optimize reaction conditions of 3b, the effect of different parameters such as various amounts of nanocatalyst (0.05–0.1 g) and solvents (distilled water, CH3CN, CHCl3, CH2Cl2, and CH3OH) in the reaction of 4-chlorobenzaldehyde (1 mmol) and malononitrile (1 mmol) was selected as model reaction. As the results of the optimization of the reaction conditions show, no product was obtained in the absence of the catalyst and solvent at room temperature after 180 min (Table 6, entry 1). The summary of the obtained results is presented in Table 6. As the table shows, the best result was obtained when the reaction was achieved using 0.05 g of the catalyst with the presence of distilled water at room temperature within 20 min with an efficiency of 95% (Table 6, entry 5). It was observed that by increasing the amount of catalyst from 0.07 to 0.1 g, no improvement was observed (Table 6, entries 6–8). The reaction was performed in the presence of other solvents, giving low yields of 3b (Table 6, entries 9–14). When the reaction mixture was stirred at a temperature of 100 °C, it was noticed that the yield decreased (Table 6, entry 15).
Entry | Catalyst (g) | Solvent | Temperature (°C) | Time (min) | Yieldb (%) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a Reaction conditions: malononitrile (1 mmol), 4-chlorobenzaldehyde (1 mmol), solvent (2 mL).b Isolated pure yield. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 | — | — | 25 | 180 | Trace | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 | 0.005 | Distilled water | 25 | 60 | 55 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 | 0.01 | Distilled water | 25 | 30 | 78 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 | 0.03 | Distilled water | 25 | 30 | 85 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5 | 0.05 | Distilled water | 25 | 20 | 95 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6 | 0.07 | Distilled water | 25 | 25 | 90 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7 | 0.09 | Distilled water | 25 | 25 | 89 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8 | 0.1 | Distilled water | 25 | 40 | 84 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9 | 0.05 | CH3CN | 25 | 50 | 60 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10 | 0.05 | CHCl3 | 25 | 50 | 65 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
11 | 0.05 | CH2Cl2 | 25 | 50 | 74 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12 | 0.05 | CH3OH | 25 | 40 | 51 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13 | 0.05 | Toluene | 25 | 100 | 38 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
14 | 0.05 | EtOH | 25 | 30 | 85 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
15 | 0.05 | Distilled water | 100 (reflux) | 90 | 70 |
After obtaining the optimal conditions, different derivatives of 2-benzylidenemalononitrile derivatives were synthesized using 0.05 g of the nanocatalyst, the results of which are presented in Table 7. As can be seen, from the reaction between different aldehydes with malonontrile, the desired products were obtained with an excellent yield of 88–96% after 8–40 min.
Entry | Product | Time (min) | Yieldb (%) | TON | TOF (h−1) | Reference | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a A mixture of various aldehyde (1 mmol) and malononitrile (1 mmol), catalyst (0.05 g, 0.75 mol%) in distilled water (2 mL) at room temperature was stirred.b Isolated pure yield. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 | ![]() |
20 | 95 | 126.6 | 383.8 | 80–82 (ref. 52) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 | ![]() |
15 | 94 | 125.3 | 501.3 | 163–165 (ref. 52) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 | ![]() |
15 | 95 | 126.6 | 506.4 | 148–150 (ref. 52) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 | ![]() |
17 | 92 | 122.6 | 437.8 | 162–164 (ref. 52) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5 | ![]() |
10 | 93 | 124 | 775 | 180–182 (ref. 52) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6 | ![]() |
40 | 89 | 118.6 | 179.7 | 111–113 (ref. 52) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7 | ![]() |
10 | 92 | 122.6 | 766.6 | 138–140 (ref. 52) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8 | ![]() |
15 | 89 | 118.6 | 474.6 | 125–127 (ref. 52) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9 | ![]() |
40 | 88 | 117.3 | 177.7 | 132–134 (ref. 52) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10 | ![]() |
8 | 96 | 128 | 984.6 | 154–156 (ref. 52) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
11 | ![]() |
8 | 95 | 126.6 | 974.3 | 160–162 (ref. 52) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12 | ![]() |
17 | 91 | 121.3 | 433.2 | 91–93 (ref. 52) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13 | ![]() |
20 | 90 | 120 | 363.3 | 100–102 (ref. 52) |
We also studied the gram scale synthesis on the reaction of 4-chlorobenzaldehyde, malononitrile and dimedone for the synthesis of derivative 4b and the reaction of 4-chlorobenzaldehyde with malononitrile for the synthesis of derivative 3b to demonstrate the ability of current method (Scheme 4). As can be seen, by stirring a mixture of 4-chlorobenzaldehyde (10 mmol), malonontrile (10 mmol) and dimedone (10 mmol) in EtOH (20 mL) and 4-chlorobenzaldehyde (10 mmol), malonontrile (10 mmol) in water (20 mL) at room temperature in the presence of catalyst, 4b and 3b can be synthesized with 88% and 89% yield, respectively.
One of the important factors in the design of environmentally friendly nanocatalysis systems is the ability to recycle and reuse the catalyst. In order to investigate the recyclability and reusability of Cu(II)-Schiff-base-(CH2)3@SiO2@Fe3O4, the reaction of 4-chlorobenzaldehyde, malonontrile and dimedone for the synthesis of derivative 4b and the reaction of 4-chlorobenzaldehyde with malonontrile for the synthesis of derivative 3b was selected as the model reaction under optimal conditions. After the completion of the reaction, the reaction mixture was cooled to room temperature. Then, the nanocatalyst was separated from the reaction mixture by an external field, washed with a mixture of water and ethanol, dried in air, and used to perform the reaction again. To check its catalytic power, the reaction was repeated seven times in the vicinity of this catalyst, and after seven times, the reaction efficiency decreased to 96 to 90% for 3b and the reaction efficiency decreased to 96 to 91% for 4b, respectively (Fig. 9a). The surface morphology of recycled sample after recycling seven times were conducted by TEM analysis (Fig. 9b). As shown in Fig. 9b, after recycling seven times, the surface morphology of recycled sample had not changed and stable against repeated use. Furthermore, the leaching experiment for the synthesis of 4b after recycling over seven successive runs by ICP analysis was studied. The obtained results indicated that leaching of Cu is was very insignificant about 1.1%.
![]() | ||
Fig. 9 (a) Reusability of as-prepared nanocatalyst during the model reaction and (b) TEM image of as-prepared nanocatalyst after seven times reuse. |
Footnote |
† Electronic supplementary information (ESI) available: Copies of FT-IR, 1H NMR (250 MHz, CDCl3 or DMSO-d6) and 13C NMR (62.5 MHz, CDCl3 or DMSO-d6) spectra of synthesized compounds. See DOI: https://doi.org/10.1039/d3ra05649j |
This journal is © The Royal Society of Chemistry 2023 |