Issue 63, 2015

High apparent strengthening efficiency for reduced graphene oxide in copper matrix composites produced by molecule-lever mixing and high-shear mixing

Abstract

Reduced graphene oxide (RGO) reinforced copper matrix composites (RGO/Cu composites) with volume fractions of RGO from 0.6 to 4.8 vol.% were produced based on a molecular-level mixing method (MLM). High-shear mixing was introduced in the process of MLM by using a rotor-stator mixer, which could make the RGO sheets distributed in the composite more homogeneous and improve the properties of the composites. The MLM method integrated with high-shear mixing is abbreviated as M-H. The effect of high-shear mixing on the mechanical properties of the composites with different volume fractions of graphene was studied. The yield strength of the 2.4 vol.% RGO/Cu composite produced by M-H method is 501.3 MPa, which is more than three times higher than that of the Cu matrix. RGO shows extremely high strengthening effect; the apparent strengthening efficiency of RGO in the 0.6 vol.% RGO/Cu composite is as high as 321.7, even higher than CNTs. The results show that the M-H method is hopeful to be applied to produce many kinds of graphene based composites.

Graphical abstract: High apparent strengthening efficiency for reduced graphene oxide in copper matrix composites produced by molecule-lever mixing and high-shear mixing

Article information

Article type
Communication
Submitted
18 Mar 2015
Accepted
01 Jun 2015
First published
01 Jun 2015

RSC Adv., 2015,5, 51193-51200

Author version available

High apparent strengthening efficiency for reduced graphene oxide in copper matrix composites produced by molecule-lever mixing and high-shear mixing

L. Wang, Y. Cui, B. Li, S. Yang, R. Li, Z. Liu, R. Vajtai and W. Fei, RSC Adv., 2015, 5, 51193 DOI: 10.1039/C5RA04782J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements