Themed collection Circular Economy

25 items
Open Access Perspective

The pathway to net zero: a chemicals perspective

The global ambition is to reach a net zero waste and emissions society by 2050.

Graphical abstract: The pathway to net zero: a chemicals perspective
From the themed collection: RSC Sustainability Recent Review Articles
Open Access Perspective

Chemistry and pathways to net zero for sustainability

Chemistry has a vital role in enabling the reductions in greenhouse gases, stewardship of material resources and new production processes needed to bring net CO2 emissions to zero by 2050, keeping within 1.5 °C of global warming.

Graphical abstract: Chemistry and pathways to net zero for sustainability
From the themed collection: Circular Economy
Open Access Perspective

Some of the challenges faced by the Composites Industry in its bid to become more sustainable

The Composites Industry needs to participate in future circular chemical economies. Cooperation, standardisation and increased availability of transparent industry data for life cycle analysis, are seen as critical to a more sustainable future.

Graphical abstract: Some of the challenges faced by the Composites Industry in its bid to become more sustainable
From the themed collection: RSC Sustainability Recent Review Articles
Open Access Perspective

Status, implications and challenges of European safe and sustainable by design paradigms applicable to nanomaterials and advanced materials

Current European (EU) policies, such as the Green Deal, envisage safe and sustainable by design (SSbD) practices for the management of chemicals, which cogently entail nanomaterials (NMs) and advanced materials (AdMa).

Graphical abstract: Status, implications and challenges of European safe and sustainable by design paradigms applicable to nanomaterials and advanced materials
From the themed collection: Circular Economy
Open Access Tutorial Review

Lignocellulosic biomass valorisation: a review of feedstocks, processes and potential value chains and their implications for the decision-making process

The complexity of lignocellulosic biomass valorisation was identified, and a novel assessment method is proposed to facilitate the decision-making process.

Graphical abstract: Lignocellulosic biomass valorisation: a review of feedstocks, processes and potential value chains and their implications for the decision-making process
From the themed collection: RSC Sustainability Recent Review Articles
Open Access Tutorial Review

On the metal- and bio-catalyzed solvolysis of polyesters and polyurethanes wastes

Catalysis is a crucial tool to efficiently address the recycling and upgrading of polymeric waste within the context of a circular economy, providing affordable and selective methods for waste valorization.

Graphical abstract: On the metal- and bio-catalyzed solvolysis of polyesters and polyurethanes wastes
From the themed collection: RSC Sustainability Recent Review Articles
Open Access Critical Review

2002–2022: 20 years of e-waste regulation in the European Union and the worldwide trends in legislation and innovation technologies for a circular economy

In the framework of e-waste management regulations, synergistic green chemistry & engineering are powerful in addressing a sustainable circular economy.

Graphical abstract: 2002–2022: 20 years of e-waste regulation in the European Union and the worldwide trends in legislation and innovation technologies for a circular economy
From the themed collection: RSC Sustainability Recent Review Articles
Open Access Critical Review

Chemical recycling of PET to value-added products

This review has focused on the concept of upcycling, which involves utilizing PET waste as a raw material for the production of value-added products such as monomers, fine chemicals, hydrogen, or carbon materials.

Graphical abstract: Chemical recycling of PET to value-added products
From the themed collection: RSC Sustainability Recent Review Articles
Open Access Critical Review

Hydrometallurgical recycling technologies for NMC Li-ion battery cathodes: current industrial practice and new R&D trends

Latest advances in hydrometallurgical recycling open new sustainable processing options beyond efficient recovery of metals towards direct recycling and upcycling of the NMC active materials.

Graphical abstract: Hydrometallurgical recycling technologies for NMC Li-ion battery cathodes: current industrial practice and new R&D trends
From the themed collection: RSC Sustainability Recent Review Articles
Open Access Critical Review

A review on spent lithium-ion battery recycling: from collection to black mass recovery

The advent of lithium-ion battery technology in portable electronic devices and electric vehicle applications results in the generation of millions of hazardous e-wastes that are detrimental to the ecosystem.

Graphical abstract: A review on spent lithium-ion battery recycling: from collection to black mass recovery
From the themed collection: RSC Sustainability Recent Review Articles
Open Access Paper

ESG assessment methodology for emerging technologies: plasma versus conventional technology for ammonia production

This study provides a demonstrated ESG assessment of emerging plasma-technology companies, exploring their potential for environmental advances and social viability, which highlights their sustainability compared to traditional methods.

Graphical abstract: ESG assessment methodology for emerging technologies: plasma versus conventional technology for ammonia production
From the themed collection: Circular Economy
Open Access Accepted Manuscript - Paper

Towards Flexible Large-Scale, Environmentally Sustainable Methanol and Ammonia Co-Production using Industrial Symbiosis.

From the themed collection: Circular Economy
Open Access Paper

From citrus waste to value: optimizing sulfonated carbons for limonene upcycling into value-added products

Sulfonated carbons facilitate the eco-friendly transformation of limonene into valuable compounds, representing a noteworthy advancement in the field of catalysis.

Graphical abstract: From citrus waste to value: optimizing sulfonated carbons for limonene upcycling into value-added products
From the themed collection: Circular Economy
Open Access Paper

Valorization of polyoxymethylene (POM) waste as a C1 synthon for industrially relevant dialkoxymethanes and cyclic aminals

Two novel methods of upcycling waste polyoxymethylene (POM) are reported, generating dialkoxymethanes by alcoholysis and cyclic aminals by aminolysis. Mixed plastic depolymerizations containing POM were also investigated.

Graphical abstract: Valorization of polyoxymethylene (POM) waste as a C1 synthon for industrially relevant dialkoxymethanes and cyclic aminals
From the themed collection: Circular Economy
Open Access Paper

General equations to estimate the CO2 production of (bio)catalytic reactions in early development stages

Global warming potential (GWP, kg CO2eq per kg product) is key to assess the greenness of reactions in LCAs. Equations are developed to estimate GWP, using available parameters like “conversion”, “substrate loading”, “reaction time” or “temperature.

Graphical abstract: General equations to estimate the CO2 production of (bio)catalytic reactions in early development stages
From the themed collection: Circular Economy
Open Access Paper

Mapping the end-of-life of chemicals for circular economy opportunities

Material flow analysis of chemicals in the United States highlights low recycling rates, substantial climate change and human health impacts, and the potential for a circular economy to reduce waste and drive sustainability in the chemical industry.

Graphical abstract: Mapping the end-of-life of chemicals for circular economy opportunities
From the themed collection: Circular Economy
Open Access Paper

Novel CO2-philic porous organic polymers synthesized in water: a leap towards eco-sustainability

β-Keto-enamine POPs, synthesized in water at relatively low temperatures, without catalysts, and using common glassware, exhibit a competitive adsorption capacity and high selectivity for CO2 over N2 at 298 K (1 bar).

Graphical abstract: Novel CO2-philic porous organic polymers synthesized in water: a leap towards eco-sustainability
From the themed collection: Circular Economy
Open Access Paper

Chemically recyclable and reprogrammable epoxy thermosets derived from renewable resources

Bio-based epoxy networks were synthesized using a vanillin-based epoxy monomer and bio-derived diamines. These networks were recycled using both acidic depolymerization and transimination methods. Reprogramming was achieved using different amines.

Graphical abstract: Chemically recyclable and reprogrammable epoxy thermosets derived from renewable resources
From the themed collection: Circular Economy
Open Access Paper

Sustainable, upscaled synthesis of pinene-derived (meth)acrylates and their application as high Tg monomers in styrene/acrylic-based bioderived copolymer coatings

Here we report the scaled-up synthesis of α-pinene-derived monomers, using less hazardous/toxic reagents. The application of these terpene-derived monomers as high Tg components in copolymer coatings with high biobased content is also investigated.

Graphical abstract: Sustainable, upscaled synthesis of pinene-derived (meth)acrylates and their application as high Tg monomers in styrene/acrylic-based bioderived copolymer coatings
From the themed collection: Circular Economy
Open Access Paper

Thermal approaches based on microwaves to recover lithium from spent lithium-ion batteries

The coupling of carbon materials with magnetic materials, available in the black mass of spent lithium-ion batteries results in a high microwave-absorbing material.

Graphical abstract: Thermal approaches based on microwaves to recover lithium from spent lithium-ion batteries
From the themed collection: Circular Economy
Open Access Paper

Ionic-liquid-processed keratin-based biocomposite films with cellulose and chitin for sustainable dye removal

Abundant biopolymers derived from wastes were used to prepare bio-based films, resulting in notable enhancements in their properties and promising potential as effective adsorbent materials.

Graphical abstract: Ionic-liquid-processed keratin-based biocomposite films with cellulose and chitin for sustainable dye removal
From the themed collection: Circular Economy
Open Access Paper

One-pot synthesis of carbon dots from neem resin and the selective detection of Fe(II) ions and photocatalytic degradation of toxic dyes

Neem resin-derived CDs (NR-CDs) exhibited a quantum yield of 21%, allowing them for multiple applications in sensitive detection of Fe2+ ions, and also in the degradation of multiple dyes in the presence of NaBH4.

Graphical abstract: One-pot synthesis of carbon dots from neem resin and the selective detection of Fe(ii) ions and photocatalytic degradation of toxic dyes
From the themed collection: Circular Economy
Open Access Paper

Recovery of palladium from waste fashion items through food waste by-products

We propose an affordable and safe route to recover palladium in its metallic form from waste fashion items and recycle it in electronic devices.

Graphical abstract: Recovery of palladium from waste fashion items through food waste by-products
From the themed collection: Circular Economy
Open Access Paper

Surface modification of aramid fiber meshes – the key to chemically recyclable epoxy composites

Fiber surface functionalization can play a dual role in the development of fiber reinforced polymer composites; improving the overall performance and enabling recovery of high-quality fibers.

Graphical abstract: Surface modification of aramid fiber meshes – the key to chemically recyclable epoxy composites
From the themed collection: Circular Economy
Open Access Paper

A techno-economic approach to guide the selection of flow recyclable ionic liquids for nanoparticle synthesis

An experimentally guided, early-stage techno-economic analysis reveals how ionic liquids can be economically adapted at scale through novel recycling methods to unlock their environmental benefits when used as solvents for nanoparticle syntheses.

Graphical abstract: A techno-economic approach to guide the selection of flow recyclable ionic liquids for nanoparticle synthesis
From the themed collection: Circular Economy
25 items

About this collection

The circular economy is an economic model that seeks to create a regenerative and sustainable system of production and consumption via management of material resources through consecutive product lifecycles. The goal is to keep products, components, and materials in use for as long as possible in closed-loop systems, extracting their maximum value, and in doing so decoupling economic activity from the consumption of finite resources while eliminating waste. Chemistry has a central role to play in designing more sustainable materials and recycling processes, and in converting waste to a valuable resource to manufacture new materials.

Spotlight

Advertisements